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Abstract. We present an automated multilevel substructuring (AMLS) method for eigenvalue
computations in linear elastodynamics in a variational and algebraic setting. AMLS first recursively
partitions the domain of the PDE into a hierarchy of subdomains. Then AMLS recursively generates
a subspace for approximating the eigenvectors associated with the smallest eigenvalues by computing
partial eigensolutions associated with the subdomains and the interfaces between them. We remark
that although we present AMLS for linear elastodynamics, our formulation is abstract and applies
to generic H1-elliptic bilinear forms.

In the variational formulation, we define an interface mass operator that is consistent with
the treatment of elastic properties by the familiar Steklov-Poincaré operator. With this interface
mass operator, all of the subdomain and interface eigenvalue problems in AMLS become orthogonal
projections of the global eigenvalue problem onto a hierarchy of subspaces. Convergence of AMLS
is determined in the continuous setting by the truncation of these eigenspaces, independent of other
discretization schemes.

The goal of AMLS, in the algebraic setting, is to achieve a high level of dimensional reduction,
locally and inexpensively, while balancing the errors associated with truncation and the finite element
discretization. This is accomplished by matching the mesh-independent AMLS truncation error with
the finite element discretization error. Our report ends with numerical experiments that demonstrate
the effectiveness of AMLS on a model and an industrial problem.
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1. Introduction. Dynamic analysis of structures frequently involves finite ele-
ment discretizations with over one million unknowns. One discretization is typically
used for many solutions, such as in a harmonic response analysis at many frequencies,
so that a dimensional reduction step is advantageous or even necessary. The standard
reduction approach is modal truncation, which requires a costly partial eigensolution
but reduces the number of unknowns by orders of magnitude. The approach used in
industry for this partial eigensolution is the shift-invert block Lanczos [7] algorithm.
The computational bottleneck of the algorithm is the linear set of equations that must
be solved at every Lanczos iteration.

Modal truncation is justified in the continuous setting because higher eigenfunc-
tions have much lower participation in the response than lower ones. But there is
an additional justification when a finite element discretization is used. If a sufficient
number of modes are retained, then the error associated with modal truncation is
of the same order as the discretization error. The implication is that the cost of the
harmonic response may be dramatically reduced without a significant loss of accuracy.

The cost of the partial eigensolution required for modal truncation may substan-
tially increase as the frequency range for the analysis increases. This is because the
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number of eigenvectors needed can easily reach into the thousands. High modal den-
sity (close spacing of eigenvalues) also contributes to the cost. An alternative to this
approach is the automated multilevel substructuring (AMLS) method, in which the
structure is recursively divided into thousands of subdomains. Eigenvectors associ-
ated with these subdomains are used to represent the structure’s response, rather
than the traditional global eigenvectors. Dimensional reduction of the finite element
discretization is based on many small, local, and inexpensive eigenvalue problems and
so any costly linear solves with the global mass and stiffness matrices are avoided.

Before we continue with our introduction, we motivate the relevance of AMLS via
a recently accomplished calculation that demonstrates its impact within the structural
dynamics community. Recently, Kropp and Heiserer [12] benchmarked the commercial
implementation of AMLS1 against the industry standard shift-invert block Lanczos
[7] algorithm available in MSC.Nastran within a vibro-acoustic analysis. Their report
concludes that the use of AMLS allows BMW to double the frequency range of interest
with commodity workstations in an order of magnitude less computing time than
the standard approach on a CRAY SV1 supercomputer. Moreover, they describe a
calculation where nearly 2, 500 eigenvectors were computed for a matrix pencil of order
just over 13, 500, 000 performed on a HP-RISC workstation; this eigenanalysis was
infeasible on the CRAY SV1 with the Lanczos algorithm. The authors are not aware
of any similar calculation let alone one computed on a workstation. We anticipate
that our report will provide a description of AMLS and so assist the development and
implementation of modal truncation methods needed to solve the next generation of
large-scale problems in structural dynamics.

The goal of our report is to carefully describe the mathematical basis for AMLS
in the continuous variational setting and relationship to the algebraic formulation.
We describe how differential eigenvalue problems are defined on subdomains and on
interfaces between subdomains. For the interface eigenvalue problems, an operator
is defined that acts on interface trace functions and consistently represents mass as-
sociated with extensions of these trace functions. All of these differential eigenvalue
problems are then shown to be projections of the global eigenvalue problem onto a hi-
erarchy of orthogonal subspaces. The eigenfunctions of these problems are orthogonal
with respect to the energy inner product and generate a basis for the space of admis-
sible functions on the global domain. We remark that although we present AMLS for
linear elastodynamics, our formulation is abstract and applies to generic H1-elliptic
bilinear forms.

AMLS is a generalization of classical component mode synthesis (CMS) tech-
niques [9, 6] (see [15] for a recent review of component mode synthesis methods). In
particular, our variational formulation is a multilevel extension of work by Bourquin,
and Bourquin and d’Hennezel [2, 3, 5, 4] that contains the first mathematical analysis
of CMS. In addition to the variational multilevel extension, we prove that AMLS is
a congruence transformation that arises from a matrix decomposition of the stiffness
matrix. The congruence transformation is carefully linked to the variational formula-
tion of AMLS. This congruence transformation allows us to treat AMLS as a purely
algebraic process; this is new work and motivates a high-performance implementa-
tion. Our third contribution is our treatment of the interface eigenvalue problem; as
described in the previous paragraph, AMLS uses a consistent treatment of mass in
contrast to the approach suggested by Bourquin. Finally, we are not aware of any
other research on multilevel substructuring for elliptic PDE eigenvalue problems and
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Fig. 2.1. The domain Ω partitioned two subdomains along an interface Γ.

the breakthrough calculation in the paper by Kropp and Heiserer [12] achieved by
AMLS justifies a careful description of the underlying algorithm.

When AMLS is applied to a finite element discretization, the error in approximat-
ing the global eigensolution is associated with both the finite element approximation
and truncation of the subdomain eigensolutions. For AMLS, convergence depends
on modal truncation and is independent of mesh size for a conforming finite element
method. This suggests that AMLS is a scalable approach for large problems. The
objective of our dimensional reduction is to retain only as many subdomain eigenvec-
tors as are needed so that the eigenspace truncation and finite element discretization
errors are consistent. This is an attractive alternative to the standard practice of
computing a costly partial eigensolution for an extremely large matrix pencil.

Our report is organized as follows. We present a single-level application of AMLS
in a continuous variational formulation in §2. We then present the single-level method
in §3 in the discrete setting resulting from a finite element discretization. These first
two sections introduce AMLS in the simplest possible setting. Section 4 is the heart of
the report extending the results of §2–3 to the multilevel case. Our report concludes
with numerical experiments applying AMLS to a simple model problem and to a large
industrial problem in §5.

We quickly review our use of standard notation. Let Ω be a two or three dimen-
sional domain with Lipschitz boundary ∂Ω and so let H1(Ω) denote a Sobolev space
of order 1; H1

0 (Ω) denote a subspace of H1(Ω) consisting of functions that vanish on

∂Ω; H
1/2
00 (Γ) denote the trace space of H1

0 (Ω) on Γ; and let the dual spaces of H1
0 (Ω)

and H
1/2
00 (Γ) be denoted by H−1(Ω) and H−1/2(Γ), respectively. Let the norms and

inner products on H1(Ω) be given by ‖·‖1 and (·, ·)1, respectively; and let 〈·, ·〉 denote
the duality pairing between a subspace and its dual.

2. Single-level method: Continuous setting. In this section, we present a
single-level scheme for generating an approximating subspace in a continuous set-
ting, leaving the generalization to the more rewarding multilevel approach for §4. In
this approach, eigenvalue problems are used to generate components of the subspace.
This method is a generalization of classical component mode synthesis techniques.
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The scheme is presented here in the context of the differential eigenvalue problem in
elastodynamics.

The differential eigenvalue problem associated with the free vibration of an elastic
solid has the form

{

−div σ(u) = λρu in Ω
u = 0 on ∂Ω,

where the eigenvalue λ is the square of the natural frequency 2πω and ρ is the mass
density. We remark that Dirichlet boundary conditions are used here for simplicity,
but the method is not limited to this choice of boundary conditions. Here, σ(u) is the
linearized stress tensor associated with the displacement u, obtained from the inner
product between the fourth-order tensor of elastic coefficients Cijkl and the linearized
strain tensor

εkl(u) =
1

2

(

∂uk

∂xl
+

∂ul

∂xk

)

.

In variational form, the differential eigenvalue problem can be expressed as: Find
(u, λ) ∈ H1

0 (Ω) × R such that

a(u, v) = λ b(u, v) ∀v ∈ H1
0 (Ω), (2.1)

where H1
0 (Ω) is the space of admissible functions and the bilinear forms

a(u, v) =

∫

Ω

∑

i,j

σij(u)εij(v) dΩ and b(u, v) =

∫

Ω

ρuv dΩ (2.2)

are associated with elastic and inertial properties, respectively. We will refer to (2.1) as
the global eigenvalue problem. Straightforward arguments show that a(·, ·) and b(·, ·)
are coercive symmetric bilinear forms, implying that the eigenvalues are positive and
the eigenvectors are orthogonal with respect to some inner product.

We partition the domain Ω into two subdomains Ω1 and Ω2 that share the inter-
face Γ = Ω1 ∩ Ω2. See Figure 2.1 for an example domain. We denote the outward
normal unit vector for subdomain Ωi on Γ by ηi. The remainder of this section ex-
plains how the global eigenvalue problem is orthogonally projected onto subspaces
associated with Ω1, Ω2 and Γ. The resulting eigenfunctions of these three eigenvalue
problems define a set of trial functions for solving the global eigenvalue problem.

For the subdomains Ωi, i = 1, 2, we define subspaces of functions that are nonzero
in Ωi and are trivially extended throughout Ω as

VΩi
= {v ∈ H1

0 (Ω): v|Ω\Ωi
= 0}, (2.3)

and solve the two fixed-interface eigenvalue problems: Find (u, λ) ∈ VΩi
×R such that

a(u, v) = λ b(u, v) ∀v ∈ VΩi
. (2.4)

In words, we solve two subdomain eigenvalue problems that are subject to Dirichlet
boundary conditions on both the boundary ∂Ω of the global domain and the interface
Γ.

For the eigenvalue problem associated with the interface Γ, we first define the
extension of a trace function that is defined on Γ. The extension v ∈ H1

0 (Ω) of a trace

function τ ∈ H
1/2
00 (Γ) solves the minimization problem

inf
v∈H1

0 (Ω)
a(v, v) subject to v|Γ = τ.
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We denote the unique extension that solves this minimization problem as EΩτ = v.
In an analogous fashion, we define the subdomain extension operator EΩi

by EΩi
τ =

(EΩτ)|Ωi
and a subspace of extensions of trace functions by

VΓ = {EΩv : v ∈ H
1/2
00 (Γ)}. (2.5)

We will make use of the following well-known result, whose proof follows from applying
elementary variational techniques to the minimization problem.

Lemma 2.1. Let a(·, ·), VΩi
and VΓ be as defined in (2.2), (2.3) and (2.5). If

u ∈ VΩi
and v ∈ VΓ, then a(u, v) = 0.

The coupling mode eigenvalue problem associated with the interface Γ is: Find
(u, λ) ∈ VΓ × R such that

a(u, v) = λb(u, v) ∀v ∈ VΓ.

Note that the only differences between this problem and (2.4) are the subspaces
containing u and v. Because an element of VΓ is determined by its trace on Γ, this

eigenvalue problem can be equivalently expressed as: Find (u, λ) ∈ H
1/2
00 (Γ)×R such

that

a(EΩu,EΩv) = λb(EΩu,EΩv) ∀v ∈ H
1/2
00 (Γ). (2.6)

The following theorem establishes that the two fixed interface and coupling mode
eigenvalue problems represent the orthogonal projections of the global eigenvalue
problem onto the subspaces VΩ1

, VΩ2
and VΓ.

Theorem 2.2. If VΩi
, VΓ and a(·, ·) are defined as above, then the direct sum

VΩ1
⊕ VΩ2

⊕ VΓ

is an orthogonal decomposition of H1
0 (Ω) in the inner product defined by a(·, ·).

Proof. For u ∈ H1
0 (Ω) define the projections onto VΓ and VΩi

as PΓi
u = EΩ(u|Γ)

and PΩi
u = (u−PΓu)|Ωi

. Lemma 2.1 shows that a(PΩi
u,PΓu) = 0 and the theorem

is proved.
We now define the bilinear forms of the coupling mode eigenvalue problem in

terms of operators acting on trace functions. We first note that

a(EΩu,EΩv) = 〈Su, v〉 ∀u, v ∈ H
1/2
00 (Γ),

where S is the well-known Steklov-Poincaré operator (see [14]) expressed in strong
form for our elasticity problem by

Sτ =

2
∑

i=1

(σ(EΩi
τ) · ηi)|Γ, (2.7)

where τ ∈ H
1/2
00 (Γ). We also need a mass operator M so that

b(EΩu,EΩv) = 〈Mu, v〉 ∀u, v ∈ H
1/2
00 (Γ),

and hence the representation of inertial properties is consistent with the representation
of elastic properties. Such a mass operator is given, in strong form, by

Mτ =

2
∑

i=1

−(σ(Gi(ρEΩi
τ)) · ηi)|Γ, (2.8)



6 J. K. BENNIGHOF and R. B. LEHOUCQ

where the Green’s function for the Dirichlet elasticity problem on subdomain Ωi is
defined by: Find Gi(f) ∈ VΩi

such that

a(Gi(f), v) = 〈f, v〉 ∈ H−1(Ω) ∀v ∈ VΩi
.

This mass operator M represents an extension of a trace function, multiplication by
ρ, and reduction back to the interface. Mechanically, the reduction step treats the
function ρEΩi

τ as a load and finds the corresponding displacement via the Green’s
function, and then the normal component of stress associated with this displacement
is evaluated at the interface. This stress component acts as a surface traction on each
of the subdomains.

The following theorem summarizes our discussion above and presents the coupling
mode eigenvalue problem in terms of operators acting on trace functions.

Theorem 2.3. The coupling mode eigenvalue problem (2.6) is equivalent to the

eigenvalue problem: Find (u, λ) ∈ H
1/2
00 (Γ) × R such that

〈Su, v〉 = λ〈Mu, v〉 ∀v ∈ H
1/2
00 (Γ).

Proof. Green’s formula gives

b(EΩu,EΩv) =
2

∑

i=1

∫

Ωi

ρ(EΩi
u)(EΩi

v) dΩi

=

2
∑

i=1

a(Gi(ρEΩi
u), EΩi

v) −

∫

Γ

(σ(Gi(ρEΩi
u)) · ηi)|ΓEΩi

v|Γ dΓ.

The integration over Γ results because EΩv has a nonzero trace on Γ. Lemma 2.1
implies that a(Gi(ρEΩi

u), EΩi
v) = 0 and so b(EΩu,EΩv) = 〈Mu, v〉, and the theorem

is proved.
We remark that the coupling mode eigenvalue problem of the theorem resembles

the one proposed by Bourquin and d’Hennezel, who also solved an eigenvalue problem
on the interface to obtain coupling modes. However, their interface eigenvalue problem
did not use the consistent mass operator M. Instead, they solved for eigenfunctions
of the Steklov-Poincaré operator, or optionally included the mass density ρ, evaluated
along Γ, in the right-hand side of the interface eigenvalue problem.

When the operator M is used, the coupling mode eigenvalue problem is a pro-
jection of the global eigenvalue problem onto the subspace of extensions VΓ. At first
glance, this distinction is innocuous enough; however, this consistent projection of
the inertial term to the interface is of fundamental importance. The result is that a
consistent truncation of eigenvalues for fixed-interface and coupling mode eigenvalue
problems is possible. This consistency is vital in the multilevel case, for which the
truncation issue is more involved.

3. Single-level method: Finite element discretization and algebraic set-

ting. A finite element discretization of (2.1) results in the global algebraic eigenvalue
problem

Kφ = λhMφ (3.1)

where K and M are stiffness and mass matrices of order n. The remainder of this
section demonstrates that AMLS is a matrix decomposition.
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One-way dissection on the union of the graphs of the mass and stiffness matrices
reorders K and M into





KΩ1
0 KΩ1,Γ

0 KΩ2
KΩ2,Γ

KT
Ω1,Γ KT

Ω2,Γ KΓ



 and





MΩ1
0 MΩ1,Γ

0 MΩ2
MΩ2,Γ

MT
Ω1,Γ MT

Ω2,Γ MΓ



 . (3.2)

The unknowns associated with rows and columns identified by Γ constitute a separator
for the graph. The finite element nodes associated with this separator identify element
boundaries that form the interface Γ. The entries in the Γ rows and columns in K

and M are obtained by integrating over the elements adjacent to the interface Γ. The
submatrices KΩi

and MΩi
are associated with the interiors of subdomains Ωi and

are of order nΩi
. We denote the order of KΓ by nΓ. Submatrices KΩi,Γ and MΩi,Γ

for i = 1, 2 represent coupling between subdomain interior unknowns and unknowns
at the interface. We remark that under mild conditions, graph partitioning software
[8, 11] algebraically computes a separator that results in two physically separated
subdomains.

Block Gaussian elimination on K results in UT KU = diag[ KΩ1
KΩ2

K̃Γ ]
where

U =





InΩ1
0 −K−1

Ω1
KΩ1,Γ

0 InΩ2
−K−1

Ω2
KΩ2,Γ

0 0 InΓ



 . (3.3)

The matrix

K̃Γ = KΓ −

2
∑

i=1

KT
Ωi,ΓK

−1
Ωi

KΩi,Γ

is the Schur complement of diag[ KΩ1
KΩ2

] in K, and is the discrete equivalent of
the Steklov-Poincaré operator (2.7). If we perform a congruence transformation on
(3.1) with U, then we obtain

UT KUφ̃ = diag[ KΩ1
KΩ2

K̃Γ ]φ̃ = UT MUφ̃λh (3.4)

where φ = Uφ̃ and the upper triangular part of the symmetric matrix UT MU is





MΩ1
0 MΩ1,Γ − MΩ1

K−1
Ω1

KΩ1,Γ

0 MΩ2
MΩ2,Γ − MΩ2

K−1
Ω2

KΩ2,Γ

? ? M̃Γ



 . (3.5)

The matrix M̃Γ is

MΓ −
2

∑

i=1

(

KT
Ωi,ΓK

−1
Ωi

MΩi,Γ + MT
Ωi,ΓK

−1
Ωi

KΩi,Γ − KT
Ωi,ΓK

−1
Ωi

MΩi
K−1

Ωi
KΩi,Γ

)

and is the discrete version of the mass complement operator (2.8).
The eigendecompositions associated with the fixed-interface and coupling mode

problems are

KΩi
ZΩi, = MΩi

ZΩi,ΛΩi
and K̃ΓZΓ = M̃ΓZΓΛΓ
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where we assume that ZT
Ωi,

MΩi
ZΩi, = InΩi

and ZT
ΓM̃ΓZΓ = InΓ

. If we define the
matrix

Z = diag[ ZΩ1
ZΩ2

ZΓ ] (3.6)

then

(UZ)T K(UZ) = D = diag[ Λ1 Λ2 ΛΓ ] (3.7)

and

(UZ)T M(UZ) =





InΩ1
0 ZT

Ω1
(MΩ1,Γ − MΩ1

K−1
Ω1

KΩ1,Γ)ZΓ

0 InΩ2
ZT

Ω2
(MΩ2,Γ − MΩ2

K−1
Ω2

KΩ2,Γ)ZΓ

? ? InΓ



 . (3.8)

Although we can solve the eigenvalue problem

(UZ)T K(UZ)v = (UZ)T M(UZ)vλh (3.9)

where φ = UZv to determine the global eigenvectors, we instead perform a modal
truncation on the fixed-interface and coupling mode eigenvalue problems. Let RΩi

and RΓ be submatrices of InΩi
and InΓ

with nΩi
and nΓ rows so that mΩi

< nΩi

and mΓ < nΓ columns. Moreover, RΩi
and RΓ are selected so that RT

Ωi
ΛΩi

RΩi
and

RT
ΓΛΓRΓ retain only the smallest eigenvalues (say those within some frequency range

of interest) associated with Ωi and Γ. Denote by

R = diag[ RΩ1
RΩ2

RΓ ] (3.10)

the block diagonal restriction matrix with nΩ1
+nΩ2

+ nΓ and mΩ1
+ mΩ2

+ mΓ rows
and columns, respectively. The preceding discussion has proved the following lemma.

Lemma 3.1. Let U, Z, Λ and R be as defined in (3.3),(3.6) and (3.10). If

D̂ = (UZR)T K(UZR) and M̂ = (UZR)T M(UZR) then

D̂x = λm,hM̂x (3.11)

is an eigenvalue problem of order m = mΩ1
+ mΩ2

+ mΓ where (UZR)x is an ap-
proximation to an eigenvector φ of (3.1).

We identify D̂ and M̂ as coarse approximations to the stiffness and mass matrices.
The lemma demonstrates that eigenvectors for (3.1) are approximated by computing
a partial eigensolution of the two fixed-interface and the coupling mode eigenvalue
problems and then performing a Rayleigh-Ritz analysis (3.11). The order of the
eigenvalue problem (3.11) is mΩ1

+ mΩ2
+ mΓ and is typically significantly smaller

than n. The error of the eigenfunction approximations is associated with both the
finite element discretization and the truncation of the coupling and fixed interface
eigenvalue problems. We refer the interested reader to [5], where error bounds appear
that account for both sources of error.

4. Continuous and Discrete Multilevel Application. This section general-
izes the results of the previous two sections to a multilevel formulation of the method
where we recursively subdivide subdomains Ω1 and Ω2 to additional levels. The mul-
tilevel case calls for a modification of notation.

We denote the j-th subdomain on level i by Ωi,j , beginning with the global domain
Ω = Ω0,1. Each subdomain Ωi,j is further partitioned into subdomains on level i + 1
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Γ
Ω2,1

Ω2,2

Γ1,1

0,1

Ω1,1

Ω1,2

Γ0,1

Ω2,3

Ω2,1

Ω2,4

Ω2,5Γ1,2

Fig. 4.1. Two level partitioning of Ω = Ω0,1; ` = 2, s0 = 1, s1 = 2 and s2 = 5.

by the interface(s) constituting Γi,j . The total number of subdomains on level i is
si. Such a multilevel partitioning can be represented as a tree, with Ω0,1 at the root
and Ω`,j at the leaves. We assume for simplicity that all of the leaf subdomains in
the subdomain tree are on level `, which means that all subdomains in any branch
of the tree are recursively subdivided until level ` is reached. We refer to all nodes
of the tree as substructures but note that only the substructures at the leaf level
correspond to Ω`,j (fixed interface problems) and the remainder of the substructures
correspond to interfaces Γi,j (coupling mode problems). Figures 4.1 and 4.2 illustrate
the partitioned domain and corresponding tree when ` = 2, s0 = 1, s1 = 2 and s2 = 5.

Let Ei,jτ be the energy minimizing extension of τ ∈ H
1/2
00 (Γi,j) into Ωi,j that is

zero on Ω/Ωi,j . Then Ei,jτ is an element of the subspace

VEi,j = {Ei,jτ : τ ∈ H
1/2
00 (Γi,j)}.

Without loss of generality, we also let Ei,jτ denote the extension of τ into Ω that is
zero on Ω/Ωi,j . Define the subspace of extensions into subdomains on level i as

VEi =

si
⊕

j=1

VEi,j ,
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Ω0,1

Ω1,1

Ω2,1 Ω2,2 Ω2,3

Ω1,2

Ω2,5Ω2,4

Fig. 4.2. Tree associated with the two level domain partitioning; ` = 2, s0 = 1, s1 = 2 and s2 = 5.

and the subspaces

Vi,j = {v ∈ H1
0 (Ω) : v|Ω\Ωi,j

= 0}.

The following result is a generalization of Theorem 2.2 to a multilevel partitioning
into subdomains.

Theorem 4.1. If the subspaces Vi,j and VEi are defined as above, and ` is the
level number for leaf subdomains in the subdomain tree, then

H1
0 (Ω) =





s
⊕̀

j=1

V`,j



 ⊕





`−1
⊕

j=0

VEj





is an orthogonal decomposition in the bilinear form a(·, ·).

Proof. We prove the result using mathematical induction. A simple extension of
Theorem 2.2 establishes the base case, which is that

H1
0 (Ω) =





s1
⊕

j=1

V1,j



 ⊕ VE0

is such an orthogonal decomposition. Now let us suppose that

H1
0 (Ω) =





si
⊕

j=1

Vi,j



 ⊕





i−1
⊕

j=0

VEj



 (4.1)

is our inductive hypothesis and we will show that this decomposition holds for level
i + 1. If we subdivide a subdomain Ωi,j , then the orthogonal decomposition

Vi,j =





⊕

k∈Ii,j

Vi+1,k



 ⊕ VEi,j

is also an application of Theorem 2.2, where Ii,j = {k : Ωi+1,k ⊂ Ωi,j} is the set of
indices for subdomains on level i + 1 that are contained in Ωi,j . The union of sets
Ii,j over all subdomains Ωi,j on level i is the set of all indices for subdomains on level
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i + 1. Therefore, we have the orthogonal decomposition

si
⊕

j=1

Vi,j =





si+1
⊕

j=1

Vi+1,j



 ⊕





si
⊕

j=1

VEi,j





=





si+1
⊕

j=1

Vi+1,j



 ⊕ VEi .

Substituting this in the expression in (4.1) yields the result

H1
0 (Ω) =





si+1
⊕

j=1

Vi+1,j



 ⊕





i
⊕

j=0

VEj



 ,

and the theorem is proved.
The theorem implies that we need to solve s` fixed interface and s0 + · · · + s`−1

coupling mode eigenvalue problems: Find (u, λ) ∈ V`,j × R such that

a(u, v) = λ b(u, v) ∀v ∈ V`,j , j = 1, . . . , s`;

and: Find (u, λ) ∈ H
1/2
00 (Γi,k) × R such that

〈Si,ku, v〉 = λ〈Mi,ku, v〉 ∀v ∈ H1/2(Γi,k), i = 0, . . . , ` − 1; k = 1, . . . , si

where Si,k and Mi,k are the Steklov-Poincaré and mass operators on Γi,k. Modal
truncation can be performed on each of these eigenvalue problems.

However, in practice, as discussed in section 3, a finite element discretization of
(2.1) leads to the discrete eigenvalue problem (3.1). A nested dissection ordering on
the union of the graphs of the mass and stiffness matrices of (3.1) then provides a
permutation of rows and columns that corresponds to a particular partitioning into
subdomains. These reordered mass and stiffness matrices display a structure similar to
(3.2) in which each fixed interface matrix also has the same structure to ` levels. The
reordered stiffness and mass matrices contain s` blocks on the diagonal corresponding
to subdomains on level `, and s0 + · · · + s`−1 blocks on the diagonal corresponding
to interfaces. For example, Figure 4.3 illustrates the stiffness matrix corresponding
to Figure 4.2. The mass matrix is analogously ordered. We remark that under mild
conditions, graph partitioning software [8, 11] algebraically computes separators that
results in physically separated subdomains.

Figure 4.3 illustrates that all of the blocks on the diagonal of the reordered K

and M correspond either to terminal subdomains Ω`,j in the tree, or to interfaces
Γi,j for j = 1, . . . , si on levels i = 0, . . . , ` − 1. Denote by UΓi,j

the elementary block
Gaussian eliminators designed to transform K to block diagonal form. For instance,
Figure 4.4 displays the block Gaussian eliminators needed for the example of Figures
4.1 to 4.3 so that if U1 ≡ UΓ1,2

UΓ1,1
UΓ0,1

then

UT
1 KU1 = diag(KΩ2,1

,KΩ2,2
, K̃Γ1,1

,KΩ2,3
,KΩ2,4

,KΩ2,5
, K̃Γ1,2

K̃Γ0,1
).

The mass matrix is also updated via a congruence transformation with U1 but is
not rendered a block diagonal matrix. Instead UT

1 MU1 retains the block structure
of M. Note that the nontrivial block columns of UΓi,j

represent extension from Γi,j
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Fig. 4.3. Two level substructuring; ` = 2, s0 = 1,s1 = 2 and s2 = 5; only the upper triangle of
the symmetric stiffness matrix is displayed.

UΓ1,1
=

























In2,1
0 −K−1

Ω2,1
KΩ2,1,Γ1,1

0 0 0 0 0

In2,2
−K−1

Ω2,2
KΩ2,2,Γ1,1

0 0 0 0 0

In1,1
0 0 0 0 0
In2,3

0 0 0 0
In2,4

0 0 0
In2,5

0 0
In1,2

0
In0,1

























UΓ1,2
=



























In2,1
0 0 0 0 0 0 0
In2,2

0 0 0 0 0 0
In1,1

0 0 0 0 0
In2,3

0 0 −K−1
Ω2,3

KΩ2,3,Γ1,2
0

In2,4
0 −K−1

Ω2,4
KΩ2,4,Γ1,2

0

In2,5
−K−1

Ω2,5
KΩ2,5,Γ1,2

0

In1,2
0
In0,1



























UΓ0,1
=





























In2,1
0 0 0 0 0 0 −K−1

Ω2,1
KΩ2,1,Γ0,1

In2,2
0 0 0 0 0 −K−1

Ω2,2
KΩ2,2,Γ0,1

In1,1
0 0 0 0 −K̃−1

Γ1,1
KΓ1,1,Γ0,1

In2,3
0 0 0 −K−1

Ω2,3
KΩ2,3,Γ0,1

In2,4
0 0 −K−1

Ω2,4
KΩ2,4,Γ0,1

In2,5
0 −K−1

Ω2,5
KΩ2,5,Γ0,1

In1,2
−K̃−1

Γ1,2
KΓ1,2,Γ0,1

In0,1





























Fig. 4.4. The three block Gaussian eliminators

throughout subdomain Ωi,j while the transpose of the same block column represents
the reduction back to Γi,j .

In general, define

U`−1 = (Π
s`−1

j=1 UΓ`−1,j
)(Π

s`−2

j=1 UΓ`−2,j
) · · ·UΓ0,1

. (4.2)
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Fig. 4.5. The last block column of the three modified block Gaussian eliminators ÛΓ1,1
, ÛΓ1,2

and ÛΓ0,1
.

Further, suppose that we solve the associated fixed interface eigenvalue problems

KΩ`,j
ZΩ`,j

= MΩ`,j
ZΩ`,j

ΛΩ`,j
, j = 1, . . . , s`

and coupling mode eigenvalue problems for i = 0, . . . , ` − 1

K̃Γi,j
ZΓi,j

= M̃Γi,j
ZΓi,j

ΛΓi,j
, j = 1, . . . , si

where ZT
Ω`,j

MΩ`,j
ZΩ`,j

= In`,j
and ZT

Γi,j
M̃Γi,j

ZΓi,j
= Ini,j

. Define

Z` = diag(ZΩ`,1
, · · · ,ZΓ0,1

) (4.3)

and let

R` = diag(RΩ`,1
, · · · ,RΓ0,1

) (4.4)

be the block diagonal matrix of restriction matrices, each with ni,j rows and mi,j <
ni,j columns that select the substructure eigenvectors associated with the smallest
eigenvalues. As explained in §3, the value of mi,j typically denotes the number of
substructure frequencies that lie within a desired frequency range.

Hence, the multilevel extension of Lemma 3.1 results in the reduced eigenvalue
problem

D̂x = M̂xλm,h (4.5)

where D̂ is a diagonal matrix of order
∑`,si

i=0,j=1 mi,j ≡ m and

(U`−1Z`R`)
T K(U`−1Z`R`) ≡ D̂

(U`−1Z`R`)
T M(U`−1Z`R`) ≡ M̂

As in §3, we identify D̂ and M̂ as coarse approximations to the stiffness and mass
matrices.

In an efficient implementation of AMLS, the computation of the block eliminators
are interleaved with the computation of the substructure eigenvectors. In other words,
the substructure eigenvectors are computed as progress is made towards the root
of the tree so that only one pass through K and M is necessary. The resulting
implementation makes better use of the memory hierarchy. Interleaving, however,
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necessitates a modified set of elementary block eliminators ÛΓi,j
for i = 0, . . . , ` − 1

and j = 1, . . . , s`−1. For example, Figure 4.5 shows that the modified eliminators only
differ in the last block column.

The reader versed in dense matrix factorizations will recognize the distinction
between our two approaches as that between a left-looking and right-looking algorithm
for Gaussian elimination. In either case, the result shows that child substructures must
be eliminated before parent substructures. The flexibility is that the children within
a level may be eliminated in any order and immediately applied to the parents as
eliminated. The following result is needed before we state our interleaving result.

Lemma 4.2. Let i = 0, . . . , ` − 1 and UΓi
= Πsi

j=1UΓi,j
. If

U`−1 ≡ UΓ`−1
UΓ`−2

· · ·UΓ0

then

U`−1 = ÛΓ`−1
ÛΓ`−2

· · · ÛΓ0
(4.6)

where ÛΓi
= Πsi

j=1ÛΓi,j
.

Proof. Proof follows from a straightforward induction argument on `.
We now state and prove our main interleaving result.
Theorem 4.3. Let Z`, R`, D̂, M̂, UΓi

ÛΓi
, and U`−1 be defined by equations

(4.3)—(4.5) and Lemma 4.2 and let

Ze
Ω`,j

= diag(In`,1
, · · · ,ZΩ`,j

, · · · , In0,1
)

Ze
Γi,j

= diag(In`,1
, · · · ,ZΓi,j

, · · · , In0,1
)

be matrices of order n that lift fixed interface and coupling mode eigenvectors. If

ZΩ`
= Πs`

j=1Z
e
Ω`,j

and ZΓi
= Πsi

j=1Z
e
Γi,j

for i = 0, . . . , ` − 1 and ` a non-negative integer then

D̂ = RT
` VT

` KV`R` and M̂ = RT
` VT

` MV`R` (4.7)

where

V` = (ÛΓ`−1
ZΩ`

)(ÛΓ`−2
ZΓ`−1

) · · · (ÛΓ0
ZΓ1

)ZΓ0

Proof. The proof is by induction on `. Lemma 3.1 establishes the base case of
` = 1. Assume that the theorem holds for i levels where i is some positive integer,
and K and M are ordered corresponding to a nested dissection ordering containing
i+1 levels. The key result needed before the the inductive hypothesis can be applied
is that

ÛΓi−1
· · · ÛΓ0

ZΩi+1
= ZΩi+1

ÛΓi−1
· · · ÛΓ0

holds. A simple inductive argument establishes this result; it is simply an observation
that ÛΓi−1

· · · ÛΓ0
is an identity matrix precisely in the locations occupied by the

fixed interface eigenvalue problems. Therefore,

Ui+1Zi+1 = (UΓi
UΓi−1

· · ·UΓ0
)(ZΩi+1

ZΓi
· · ·ZΓ0

)

= (ÛΓi
ÛΓi−1

· · · ÛΓ0
)(ZΩi+1

ZΓi
· · ·ZΓ0

)

= (ÛΓi
ZΩi+1

)(ÛΓi−1
· · · ÛΓ0

)(ZΓi
ZΓi−1

· · ·ZΓ0
)

= (ÛΓi
ZΩi+1

)Vi

= Vi+1
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D̂ =
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0 0 0
Λm2,5

0 0
Λm1,2

0
Λm0,1

























Fig. 4.6. The final stiffness matrix

where the second equality follows from Lemma 4.2, the third equality because there
are no fixed interface eigenvalue problems on level i and so ZΩi

= I and the final
equality uses our inductive hypothesis. The conclusion of the theorem now easily
follows.

Equation (4.7) states that after the initial block Gaussian eliminators for level
` − 1 are applied, the solutions of the fixed interface eigenvalue problems are ap-
plied as a congruence transformation. The remainder of the process is a sequence
of modified block Gaussian eliminators followed by the coupling mode eigenvectors
applied as a congruence transformation. Finally, restrictions are applied that retain
only substructure eigenvalues and eigenvectors that lie in the desired frequency range
of interest.

Theorem 4.3 demonstrates how the interleaving is accomplished; however, in prac-
tice, the restrictions are not delayed. Instead, the restrictions are applied by only
computing partial solutions of all the fixed interface and coupling mode eigenvalue
problems and only these eigenvectors are applied during the congruence transforma-
tion. For example, a Lanczos based eigensolver may be used for these partial eigen-
solutions. This dramatically reduces the cost associated with the various eigenvalue
problems. (The restrictions were not interleaved purely for the complexity in notation
introduced.) We refer the reader to the recent thesis [10] of Kaplan for details on a
high quality and efficient implementation of AMLS applied to the numerical solution
of frequency response problems. The next section will give examples of how the size
of the partial eigenvalue problem is determined in practical computation.

The interleaving of the restrictions implies that the size of the transformed stiff-
ness and mass matrices decreases as interleaving progresses. Figures 4.6 and 4.7
display the final stiffness and mass matrices.

5. Numerical Experiments. In this section we present two examples. The first
example applies AMLS to determine the free vibrations of a membrane. The goal
of the first example to understand the eigenvalue and eigenvector approximations
computed by AMLS and the interplay between the FEM discretization and modal
truncation errors. The second example presents AMLS applied to determine the
frequencies and modes of an automobile body. The goal of the second example to
give an indication of the efficiency of AMLS on a large-scale industrial example.

5.1. Free Vibrations of a Membrane. We apply AMLS to the differential
eigenvalue problem associated with a membrane on the unit square. The eigenvalue



16 J. K. BENNIGHOF and R. B. LEHOUCQ

M̂ =

























Im2,1
0 M̌Ω2,1,Γ1,1

0 0 0 0 M̌Ω2,1,Γ0,1

Im2,2
M̌Ω2,2,Γ1,1

0 0 0 0 M̌Ω2,2,Γ0,1

Im1,1
0 0 0 0 M̌Γ1,1,Γ0,1

Im2,3
0 0 M̌Ω2,3,Γ1,2

M̌Ω2,3,Γ0,1

Im2,4
0 M̌Ω2,4,Γ1,2

M̌Ω2,4,Γ0,1

Im2,5
M̌Ω2,5,Γ1,2

M̌Ω2,5,Γ0,1

Im1,2
M̌Γ1,2,Γ0,1

Im0,1

























Fig. 4.7. The final mass matrix

ΓΓ0,10,1ΓΓΓΓ

Ω1,1 Ω1,2

Ω1,3 Ω1,4

Ω2,2Ω2,1

ΓΓ0,10,1ΓΓΓΓ

Γ1,1ΓΓ
Ω2,42,4Ω2,3

Ω1,2

Ω1,3 Ω1,4

Fig. 5.1. The recursively partitioned to level ` = 2 unit square. All of the subdomains Ω1,j for
j = 2, 3, 4 are also partitioned as Ω1,1.

problem in strong form is

−∆u = λu (5.1)

with Dirichlet boundary conditions on all four edges. The eigenvalues for (5.1) are
given by λi,j = π2(i2 + j2) and so the frequencies are given by

ωi,j =

√

λi,j

2π
=

√

i2 + j2

2

for i and j positive integers. We are interested in determining dimensionless fre-
quencies up through 4 (ωi,j ≤ 4) and corresponding eigenvectors. A finite element
discretization using a uniform triangulation with bilinear elements generates stiffness
and mass matrices K and M. AMLS is then applied to compute approximations to
the eigenvalues and eigenvectors of the matrix pencil (K,M).

Figures 5.2—5.5 give the relative errors with respect to the exact eigenvalues, for
a given FEM discretization, as computed by a Matlab implementation of AMLS and
the Matlab routine eigs. Before commenting on the Figures, we provide some details
on the two Matlab routines.

The Matlab routine eigs solves the generalized eigenvalue problem corresponding
to the matrix pencil (K,M) by computing the eigenvalues of the shift-invert (with
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Table 5.1

The orders of the substructures. The top row displays the global matrix order. Notation from
§4 is used in order to indicate various parameters. Note that because all the substructures at a level
are equivalent, ni,1 = · · · = ni,si

.

2,209 9,025 36,481 57,121
` 2 3 4 4

n0,1(s0) 93 (1) 189 (1) 381 (1) 477 (1)
n1,j(s1) 45 (4) 93 (4) 189 (4) 237(4)
n2,j(s2) 121 (16) 45 (16) 93 (16) 117 (16)
n3,j(s3) 121 (64) 45 (64) 57 (64)
n4,j(s4) 121 (256) 196 (256)

Table 5.2

The number of modes retained and the frequency cut-off used for all the substructure eigenvalue
problems. The top row displays the global matrix order. Notation from §4 is used in order to indicate
various parameters. In particular, m denotes the total number of substructure modes retained (the
order of the final eigenvalue problem (4.5)) so determining the approximations to the free vibrations
of the membrane. Note that because all the substructures at a level are equivalent, mi,1 = · · · = mi,si

.

2,209 9,025 36,481 57,121
m0,1 (freq. cut-off) 13 (5.0) 13 (5.0) 13 (5.0) 13 (5.0)
m1,j (freq. cut-off) 9 (7.9) 9 (7.9) 9 (7.9) 9 (7.9)
m2,j (freq. cut-off) 8 (7.9) 7 (11.9) 7 (11.9) 7 (11.8)
m3,j (freq. cut-off) 4 (11.9) 5 (17.2) 5 (17.1)
m4,j (freq. cut-off) 1 (17.2) 1 (17.1)

m 177 417 737 737

shift set to zero) system

K−1Mx =
1

λ
x

by using the appropriate ARPACK [13] subroutine. The subroutine implements an
implicitly restarted Lanczos method. The Matlab sparse Cholesky solver is used for
solving the necessary linear systems. We refer the reader to the online Matlab doc-
umentation of eigs for further details. All the Lanczos runs are computed in this
fashion. We set the tolerance for eigs equal to machine precision and computed
frequencies up through 5. We comment that although the resulting residuals (mea-
sured using a discrete L2 norm) were of order machine precision, the finite element
discretization error is substantially larger. Hence, we can regard the eigenvalues and
eigenvectors as computed by eigs as accurate as allowed by the finite element dis-
cretization, and these represent an accuracy benchmark for comparing against AMLS.

The Matlab routine implementing AMLS for the membrane problem partitions
the domain Ω0,1 into four subdomains Ω1,i by the cross-shaped interface Γ0,1; each
subdomain is recursively partitioned to ` levels in a similar fashion. Figure 5.1 il-
lustrates the process for ` = 2 levels. Therefore, the number of substructures on
level i is simply si = 4i. Tables 5.1 and 5.2 list, for each membrane problem for
which results are presented, the order of the global problem, the number of levels `,
the order and number of fixed-interface eigenvalue problems, the order and number
of coupling mode eigenvalue problems for each level, the number of retained modes
for each substructure and the order of the final eigenvalue problem (4.5). The block
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Gaussian eliminators are computed by using the Matlab sparse Cholesky solver. The
fixed interface and coupling mode eigenvalue problems were solved by using the Mat-
lab routine eig (no s appended). The eigenvalue problem (4.5) is solved by a call
to eigs to compute all the eigenvalues and corresponding eigenvectors through 4 .
Finally, we obtain approximations to the eigenvectors of the matrix pencil (K,M) by
premultiplying the eigenvectors of (4.5) by V`R`.

We now return to a discussion of Figures 5.2—5.5. These figures display plots of
the relative errors for the eigenvalues as computed by AMLS and eigs. Recall that
the error for the AMLS computed eigenvalues is associated with both the finite ele-
ment discretization and the AMLS mode truncation. The figures show that the error
associated with mode truncation can be nearly as small as that of the discretization
error. Figures 5.2—5.4 also demonstrate that the eigenvalues computed by AMLS
achieve nearly the quadratic rate of convergence inherent in the finite element dis-
cretization. Figure 5.5, in particular shows that the number m of substructure modes
retained does not increase even though the order of the global problem increased from
36, 481 to 57, 121.

Finally, Figures 5.6—5.7 plot information concerning the quality of the computed
eigenvectors. Figure 5.6 displays the sines of the angles between the eigenspace as
computed by eigs and AMLS up through 4 for matrix orders 2, 209, 9, 025 and
36, 481. Given our earlier comments concerning the accuracy of the eigenvalues and
eigenvectors as computed by the Lanczos routine eigs, AMLS computes eigenvectors
that are nearly as accurate as allowed by the finite element discretization. Figure
5.7 displays the discrete L2 residual errors of the eigenvalues and eigenvectors as
computed by AMLS for matrix orders 2, 209, 9, 025 and 36, 481.

5.2. Automobile Body. For an example of the application of AMLS to indus-
trial problems, we briefly present results for the analysis of a automobile body [1].
A finite element discretization of dimension 2.9 million was generated for this vehicle
body at an automobile company. Using the MSC.Nastran commercial version of the
Lanczos eigensolver implementation described in [7], we determined that there were
824 eigenpairs with natural frequencies up to 400 .

To approximate these eigenpairs using AMLS, we generated a substructure tree
automatically based on the sparsity of the stiffness and mass matrices, having 12, 068
substructures on 24 levels. We obtain partial eigensolutions for substructures with a
frequency cut-off of 4000 on all levels, yielding a total of m = 40, 336 substructure
eigenvectors. Table 5.3 presents the accuracy of the AMLS approximate natural
frequencies relative to the Lanczos results. With AMLS, this problem can be solved
on one workstation processor (200 Mhz IBM RISC) in about half the time required for
solution on a multiprocessor vector supercomputer (a Cray T90) using the commercial
Lanczos implementation. We are not aware of a calculation similar in scope computed
on a low-end workstation.

6. Conclusions. In this report we presented the automated multilevel substruc-
turing (AMLS) method for approximating eigenpairs in elastodynamics. This was ac-
complished by dividing the problem domain recursively into subdomains on multiple
levels. We then generated an approximating subspace by obtaining eigenfunctions
associated with subdomains and the interfaces between them.

We first examined the method in the continuous setting. We solve fixed-interface
eigenvalue problems on subdomains and interfaces where the Steklov-Poincaré oper-
ator represents elastic behavior and a new interface mass operator was defined to
represent inertial effects consistently. All of these eigenvalue problems were shown to
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Fig. 5.2. Comparing relative errors in the eigenvalues as computed by AMLS and Lanczos:
Matrix size of 2,209.
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Fig. 5.3. Comparing relative errors in the eigenvalues as computed by AMLS and Lanczos:
Matrix size of 9,025.
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Fig. 5.4. Comparing relative errors in the eigenvalues as computed by AMLS and Lanczos:
Matrix size of 36,481.
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Fig. 5.5. Comparing relative errors in the eigenvalues as computed by AMLS and Lanczos:
Matrix size of 57,121.
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Fig. 5.7. L2 residual errors of the approximate eigenvalues and eigenvectors as computed by
AMLS.
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Table 5.3

Industrial example: accuracy of natural frequencies

Frequency Relative accuracy of Number of natural
range natural frequencies frequencies in range

0-50 < 0.00003 18
50-100 < 0.00015 40
100-200 < 0.0005 164
200-300 < 0.0013 266
300-400 < 0.003 336

be projections of the global eigenvalue problem onto a hierarchy of subspaces that are
orthogonal in the energy inner product. The error associated with truncating these
subspaces in the continuous setting is mesh-independent. We remark that although
we presented AMLS for linear elastodynamics, our formulation is abstract and applies
to generic H1-elliptic bilinear forms.

We showed that AMLS is a generalization of classical component mode synthesis
(CMS) techniques. In particular, our variational formulation is a multilevel extension
of work by Bourquin, and Bourquin and d’Hennezel [2, 3, 5, 4] that contains the
first mathematical analysis of CMS. In addition, we proved that AMLS is a congru-
ence transformation that arises from a matrix decomposition of the stiffness matrix.
The congruence transformation was carefully linked to the variational formulation of
AMLS. This congruence transformation allows us to treat AMLS as a purely alge-
braic process. To the best of knowledge, our report is the first study that investigates
multilevel substructuring for elliptic PDE eigenvalue problems; the breakthrough cal-
culations in the paper by Kropp and Heiserer achieved by AMLS justifies a careful
description of the underlying algorithm [12].
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